a Reliable UAV platform
The key to commercializing unmanned aerial vehicle (UAV) services is proving that your platform is reliable, durable, and failsafe over a long period of operating time, with consistent results.
If your platform is well-built and provably reliable, it opens up the route to lucrative regulatory approvals. As we know, the unmanned autonomous industry, of which BVLOS is a big part, is about to launch into a massive growth phase.
In this article, we will try to help you understand the five key elements to create the most reliable unmanned autonomous platform.
Why it’s so hard to get regulatory approval
As an emerging industry, there are still many performance blind spots in the BVLOS space. To eradicate known failures, manufacturers will be asked to stress test their systems repeatedly in different environments, and prove that it’s a reliable failsafe system.
Each of the five main platform elements involves different aspects of reliability, including component manufacturers who are working hard to prove their durability over time.
When is the best time to create a partnership with component manufacturers? How can the best partners be identified in advance? And what are the key indicators to look for when choosing component manufacturers?
We understand that integrating an external component and/or system takes a lot of trust and is a leap of faith in some ways. We’ll help you answer these crucial questions. Here’s what to consider with each of the five elements:
1) Flight Management System
To get regulatory approval, your flight management systems need to make the most of emerging technical innovations to create failsafe drone communications that can command and control your unmanned aerial systems (UAS) fully autonomously.
Pay attention to potential partners who can show that their systems have accumulated lots of hours of testing and application. The FAA BVLOS regulators view it favorably when a company can show that it has tested its products over a long period in several environments.
Flight management systems need to show they have a solution that requires little customization. They must also be able to show tangible results like improved fuel efficiency, reduced operating costs, improved safety, and of course certifiability.
2) Failsafe Systems
A failsafe system ensures the safety of human populations and key infrastructure in the event of an in-flight accident.
One common failsafe system is the parachute option. This is where an onboard computer diagnoses a problem and deploys a parachute. A drone that has lost all control can be a flying weapon as it descends to earth.
Other failsafe options include an onboard sensor system that can restore equilibrium when one or more rotors are lost. This is achieved by inducing yaw forces to stabilize the average force of the remaining propellers.
3) Detect and Avoid
BVLOS flights use GPS tracking to map out obstacle-free routes. If an unknown obstacle enters its path, or if a moving object like aircraft or wildlife moves into its path, situational awareness could avert a disaster.
Current commercial solutions include a bumper solution that uses sensors to scan a distance of about 10-40m around the aircraft. The solution is not suited for commercial operations, as they often fly at faster speeds over many large ranges.
Situational awareness and collision avoidance are currently important pieces of the jigsaw puzzle of reliable unmanned autonomous platforms.
4) Platform Structure Durability
The quality and durability of the overall platform over time could be the difference between achieving regulatory certifications or not. Industrial drones operate in extreme temperature and pressure zones. They are also likely to face high levels of shock and moisture.
These stresses can break a vulnerable structure easily. It’s important to anticipate the effects of these stresses very early in the design process. Regulators will look favorably upon structures with a long track record of durability in the face of harsh conditions.
So, selecting component partners should be done carefully. It’s important to understand that components that commonly fail are minor components like capacitors, connectors, and even solder joints.
5) Connectivity
Finding a high uptime UAV connectivity solution is an enormous challenge. UAVs rely on conventional communications provided by cellular network operators or long-range radio frequency (which is less scalable for BVLOS operations). A gap in-network coverage could be fatal. Companies that achieve a modular, flexible and adjustable communication pipeline will bring multiple failsafe options to the table and are favorable in the eyes of regulators around the globe.
Elsight’s Halo connectivity platform combines different communication methods to achieve one solid communication pipeline. The advantages of using existing technologies in a hybrid and modular way are a key element in receiving regulatory approvals. Relying on one communication method, even when talking about failover capabilities just isn’t enough. Halo utilizes all communication methods available in the area to create a reliable, stable connection to operators.
Conclusion
There are so many companies that can boost the reliability of unmanned aerial platforms. Many of those companies have accumulated operating time to ensure their reliability, and they can prove it too.
Regulators place a premium on reliability and safety. If you are looking for regulatory approvals, then you must make sure the system is reliable, safe to operate, and with multiple failsafe capabilities. Don’t be afraid to perform rigorous due diligence before partnering with someone. Provable operation time is your best route towards expansion and commercialization.
the Know
Going Beyond RF Communications with Cellular Connectivity and 5G
Up to now, civilian drones have largely relied on RF (radio frequency) communications for control, telemetry, and payload data transmission. While this works well for…
Learn MorePrimer on EASA Remote ID Regulations
EASA drone operator registration have specific requirements. This article focuses on the details laid down by the European Union’s Aviation Safety Agency (EASA), which must be followed by all drone operators in every EU member state.
Learn MoreCommercial Delivery Drones Reduce the Environmental Signature
Small commercial delivery drones used for civilian applications are electrically powered and environmentally friendly. Elsight’s drone technology provides a communications solution for developers looking into the rapidly advancing drone industry.
Learn MoreDrone Source EP. 4: Barriers and Opportunities for the Drone Industry
Elsights Podcast Drone Source. An episode with Richard Nichols, founder of Airwards, and his perspective on the growing drone industry and recognizing people & companies within it! Podcast was hijacked by Scott Jonasz, Elsight VP of Global Sales & Alliances
Learn MorePart 4: The $45 Billion Commercial UAV BVLOS road to profitability
Commercially scaling BVLOS drone operations offers a massive opportunity for the UAV industry. Time to understand and adopt new technologies into your platforms.
Learn MoreDrone Source EP. 2: George Kirov of Dynamic Strategies & Concepts
Elsights Podcast Drone Source. Tune in to episode two where Elsight’s Asaf Raz discusses the development of Beyond Visual Line of Sight (BVLOS) technology with George Kirov, the Managing Director of Dynamic Strategies & Concepts.
Learn MoreScaling commercial BVLOS drone delivery – Is it all about UAV regulation?
Scaling commercial BVLOS drone delivery – Is it all about UAV regulation? Drone delivery, direct to your door.
Learn MorePart 3: The $45 Billion Dollar commercial UAV BVLOS solution
Part 3: The $45 Billion Dollar commercial UAV BVLOS solution: explosive growth and expanding market opportunities
Learn MorePart 2: The $45 Billion Dollar commercial UAV BVLOS challenge
Part 2: The $45 Billion Dollar commercial UAV BVLOS challenge: explosive growth and expanding market opportunities
Learn MorePart 1: The $45 Billion Dollar commercial UAV BVLOS Opportunity
Part 1: The $45 Billion Dollar commercial UAV BVLOS challenge: explosive growth and expanding market opportunities
Learn MoreResources
When Farada needed a connectivity solution for their G1 and G2 drones, they turned to Elsight. The Elsight Halo provided Farada with complete command and control of their drones at all times, while freeing up resources for greater payload capacity and endurance.
Download nowRemote ID for drones is already an FAA requirement. Learn about the tech behind Remote ID and why the Halo is the best solution for your Remote ID needs
Download nowWe know what lies ahead for you, if it’s BVLOS, regulation, integration, partnerships or revenue orchestration, so we decided to create a guide, that will make sure you won’t miss a thing!
Download nowLearn about the benefits of the Halo Value Investment Program and how it can help you scale your BVLOS operations
Watch nowAll you need to know about drone SWaP tradeoffs - It's time to get your drone ready for BVLOS with the optimal size, weight and power balance
Download nowLearn more about how Elsight's drone enabling technology helped Gadfin achieve their business goals
Download nowConnect - Beyond the line of sight, Get Certified, and Scale
Download nowThe most informative BVLOS vertical ebook that will help you go from limited LOS to exponential business growth
Download nowAll the secrets you need to know about drone connectivity for any kind of operations
Download nowLearn about Scaling BVLOS autonomous UAV operations - The new era of UAS
Watch now